Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression

نویسندگان

  • Michalis K. Titsias
  • Miguel Lázaro-Gredilla
چکیده

We introduce a novel variational method that allows to approximately integrate out kernel hyperparameters, such as length-scales, in Gaussian process regression. This approach consists of a novel variant of the variational framework that has been recently developed for the Gaussian process latent variable model which additionally makes use of a standardised representation of the Gaussian process. We consider this technique for learning Mahalanobis distance metrics in a Gaussian process regression setting and provide experimental evaluations and comparisons with existing methods by considering datasets with high-dimensional inputs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression

We present a new variational inference algorithm for Gaussian process regression with non-conjugate likelihood functions, with application to a wide array of problems including binary and multi-class classification, and ordinal regression. Our method constructs a concave lower bound that is optimized using an efficient fixed-point updating algorithm. We show that the new algorithm has highly co...

متن کامل

Variational Inference for Gaussian Process Models with Linear Complexity

Large-scale Gaussian process inference has long faced practical challenges due to time and space complexity that is superlinear in dataset size. While sparse variational Gaussian process models are capable of learning from large-scale data, standard strategies for sparsifying the model can prevent the approximation of complex functions. In this work, we propose a novel variational Gaussian proc...

متن کامل

Variational Inference for Sparse Spectrum Approximation in Gaussian Process Regression

Standard sparse pseudo-input approximations to the Gaussian process (GP) cannot handle complex functions well. Sparse spectrum alternatives attempt to answer this but are known to over-fit. We suggest the use of variational inference for the sparse spectrum approximation to avoid both issues. We model the covariance function with a finite Fourier series approximation and treat it as a random va...

متن کامل

Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression

This paper presents a novel variational inference framework for deriving a family of Bayesian sparse Gaussian process regression (SGPR) models whose approximations are variationally optimal with respect to the full-rank GPR model enriched with various corresponding correlation structures of the observation noises. Our variational Bayesian SGPR (VBSGPR) models jointly treat both the distribution...

متن کامل

Sparse Variational Inference for Generalized Gaussian Process Models

Gaussian processes (GP) provide an attractive machine learning model due to their nonparametric form, their flexibility to capture many types of observation data, and their generic inference procedures. Sparse GP inference algorithms address the cubic complexity of GPs by focusing on a small set of pseudo-samples. To date, such approaches have focused on the simple case of Gaussian observation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013